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BACKGROUND OF THE JCF RULE

Bak, Tang, and Weisenfeld (BTW) (ref 1) introduced the concept of self-organized
critically (SOC) to provide a consistent explanation for the fractal spatial structures, power-law
distributions, and flicker noise commonly observed in spatially extended, dissipative, dynamical
systems. Jensen, Christensen, and Fogedby (JCF) (ref 2) clarified the ideas in BTW and
established the connection between the power-law dependencies of the distribution of lifetimes
and the power spectral densities (PSD).

Denoting the lifetime of an event by T, the JCF weighted distribution of lifetimes G(T) is
defined as

G (7) -- f ds '2s,
0 

T

where P(S, T) is the joint probability for total time integrated "sliding" S and lifetime T of an
event (e.g., an avalanche). JCF demonstrate that the PSD corresponding to such a weighted
distribution of lifetimes is given by

SO/) = 2 f drG(r)sin2(7fr) (2)
(,nf) 2 0

where v is the pulse repetition rate and f is the frequency.

JCF assumed that the weighted distribution of lifetimes G(T) varies (approximately) as

when T < to (3)
G7 fexp(-7T 0), when to.

We refer to the form of Eq. (3) as an "exponentially cutoff power-law distribution of lifetimes."
The parameters in the distribution are referred to as: (1) the lifetime distribution exponent: a;
(2) the exponential cutoff parameter: T.; and (3) the lower lifetime cutoff: t1.

JCF established that an exponentially cutoff power-law distribution of lifeti,,cs gives rise

to PSD S(f) of the form,

const, when f < lITo,

SO fI, when l/To ! f < lito, (4)

f2, when f > l/to.

We refer to the exponent E as the power spectral density exponent. Further, JCF established
that the power spectral density exponent is determined by its counterpart in the distribution of
lifetimes, viz.,



0, when a < -3,
E -(3+a), when -3 f a <-1, (5)

{-2, when a > -1.

Note the appearance of critical frequencies 1ITo and l/to at which the frequency dependence of
the PSD changes form. Equations (4) and (5) constitute the JCF connection between the
distribution of lifetimes and the PSD.

The JCF connection pertains to a wider range of systems than those resulting from SOC
processes. The results are consequences of the absence of characteristic length and time scales
and therefore apply to systems that exhibit fractal scaling, etc., independent of an organizing
principle.

Furthermore, the JCF connection does not depend on the specific form of the cutoff
power-law distribution of lifetimes. This is important because the data are not necessarily well-
described by exponentially cutoff power laws. For example, the behavior of real sandpiles (ref 3)
and the Barkhausen effect (ref 4) indicate that the distributions are cut off, but the ý,est form is
not obvious. The distribution of lifetimes in the Barkhausen effect in three ferromagnetic metals
(Metglas 2605S (Fe7B 1 3Si1,), polycrystalline iron thermocouple wire, and Alumel (Ni"A 3 Mn 2))
was determined to be better represented as sharp cutoff than exponentially cutoff weighted
distributions of lifetimes in Reference 4.

In this report we demonstrate that a sharp cutoff weighted distribution of lifetimes gives
rise to the JCF parameter connections with the cutoff lifetime (largest lifetime in a "siz. effect"
limited distribution) playing the role of To in the exponentially cutoff distribution, as was claimed
in Reference 4.

THE SHARP CUTOFF FORM

Assume that the weighted distribution of lifetimes G(T) varies (approximately) as a sharp

cutoff power law

[o, when T <to
G(7) Tj , when To T T2to (6)

0, when T > To

so that from Eq. (2), the PSD is given by

2



TO

S(-) = &f & (P,( r f)) 2(7a)
go R

- iTfy-3 f dx x"(sm2(x)) (7b)

= (V< -6').3 ) W(aMiftOT 0) (7c)

where Eq. (7c) serves to define the function W

b

W(a,a,b) = f dx xamsi(x) (7d)

a

One sees that S(f) is proportional to f<+ 3 )W(a,iftorfTo).

ANALYTIC RESULTS

General Solution of the Sharp Cutoff JCF Problem

Mathematica is well-suited to the evaluation of the sharp cutoff expressions for the PSD.
For general values of a, W(aab) may be expressed in terms of generalized hypergeometric
functions ,,FA(z). After some editing, the Mathematica input

Integratex - alphaSi (x] 2, {xa,b iI yields:
W a b) - a (1÷

V4440~) - * 0(1-, GIF j.j._!}(-b2)) _a--6 (I- -F~n3.(a

2(1 +a) 0 { j- j 0' 2( 2a {j i12 2 3

It is clear that one can express the general a form of W(aab) in terms of functions dependent
on the limits separately, i.e.,

Ka•,a,b) = %ýcb,) - *<cga) (8a)

+4gt 0 2(! .3
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Mathematica 2.1 evaluates the generalized hypergeometric function

{1.1 F _}I.I}(-x2 ) for x < 20

but fails for larger values of x. (Mathematica 2.1 is employed to obtain numerical values of

W(a,a,b) for arbitrary a, a, and b via NIntegrate[x^alpha Sinm[r]2,{a,b}J.)

Special values of a

When a is integer or half-integer valued, W may be expressed in terms of Fresnel
integrals and cosine and sine integrals, a better known set of functions, which were recently the
subject of a "Numerical Recipes" column of Press and Teukolsky (ref 5).

Employing the Mathematica code:

For[i = -8, i < 3, i + +,

w[i/2,t_]: =Evaluate[

Map[Simplify[Apart[#l]&,Integrateft ^(i/2)Sin[t] '2,tll]];

one obtains the following expressions w[ail for integer and half-integer a values in the range of
interest

%[4A - I (I-2t)cos(2t) s(2t) 2 $SinM egra(2t) (9)

w(7124] -1 (3-1t&2)c€2t) .- V 432o) (9b)
5 5 15 3

5td 1St2  1St2

%I-3,t]- -1 + cs(2t) + Coadtegralm2) - _M ) (9c)4t2 4t2 2t

w-5/U] = -1 + Comm) it 4) 4M) (9d)

3t2  3t i

4



w[ -2t] -I + ,os(2t) + S'nwtegral(2t) (9.)
2t 2t

w[-/,] 1 +c06(2t) + 2F~r Fres=4l3Lt) (9M

w[-l,t =-Coslntegral(2t) + log(t) (9g)2 2

w[1/,t -FresneIC{3) (9h)w[-I1/2,t] FU I ý )}

2

W _oj] t sin(2t) (90)
2 4

3~ FUFresneS 2,,r

w[ 1/2,t] = t 2+7 V6 sin(2t)(
3 8 4

t g2 _ cos(2t) tsin(2t) (9k)
4 8 4

With these analytic expressions, one can consider various ranges of f and demonstrate
that the JCF connections obtain for the special a values. We consider a few cases in detail:

A. a = -2.

1. The behavior of w[-2,t] given in Eq. (9e).

a. Small t. One could use the expansion of Eq. (16) of Reference 5, etc., to
obtain the small t form of w[-2,t1. Here we employ the Series command from Mathematica to
obtain

t3 2ts t 7
w[-2.t] -" t - -t + + O(t)

9 225 2205
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b. Large t. Using the large t limiting form (which can be deduced in
Mathematica):

Sinlntegral[t] + 7. /2

t

one obtains:

w[-2,t]--- +
2t 2 2

2. The behavior WI-2,a,b] and the PSD exponent. From Eq. (7c),

SO/) -f-1+3)wa,7tftfro) - r-fw(-2,ftpXfro)

a. a << b << 1 orf«<< 1To 1/tO.

W[-2,a,b] w[-2,b] -. f1T0 and S(f) - const

b. a<<1<<borl/To<<f<<l/tO.

W[-2,a,b w[-2,b] -- x/2 and S(t) P

c. a << b << 1 or 11T. << l/to <<j.

The 7r/2 terms in w[-2,a] and w[-2,b] cancel and

1 _1 1W[ -2,Ab] = 1- - I =--
2a 2b 2:ft0

Thus,

Sq) o_ f-I X 1f = f-2

Thus, the JCF connections are established for the case a = -2.

B. a = -3/2.

1. The behavior of w[-3/2,t] given in Eq. (9f).

a. Small t. One could use the expansion of Eq. (10) of Reference 5, etc., to
obtain the small t form of w[-3/2,t]. Here we employ the Series command from Mathematica to
obtain:

6



3 7 11
2 _ ~2 _ 4t •--13w[-3/2,t] t2 2 + 4t2 + 0t
3 21 495

b. Large t. Using the large t limiting form of Eq. (15) of Reference 5, one
obtains:

w[-32J] - - I + F -

2. The behavior WI-3/2,a,b] and the PSD exponent. From Eq. (7c)

Sq) _ f-, 3,)W(a,dfto,,fT) -_ f-1W(-3/2,xftfro)

a. a << b << 1 orf«<< 1/To << 1/to.

W-3/,2,J = 3/2,b] - 2 ( •fTo) and SO') - const
3

b. a << 1 << b or 1/To << f << 1/to.

W[-3/2,a,bJ = w[-3/2,b] -- F and S(f) _ f-

c. a <<b<< 1 or lIT 0 << 1/to <<f.

The •-rr terms in w[-312,a] and w[-3/2,b] cancel and

W[-32,a,b] 1 1 _ '/=/-

Thus,

Syt) _f-N2 x f- 11 2 _ f-2

Thus, the JCF connections are established for the case a = -3/2.

7



C. a1.

1. The behavior of w[l,t] given in Eq. (9k).

a. Small t. Employ the Series command from MathematIca to obtain
I t4 t6

w[11A - - + + O
8 4 18

b. Large t.

w[l,t] - 2

4

2. The behavior W[1,a,b] and the PSD exponent. From Eq. (7c),

S(f) -f-'d+3 )W(d,7[ftO7JT0) - fPW(1,7[ftO,7Cff 0 )

a. a < < b < < 1 or f < < 1To < < lt 0. The 1/8 terms in w[1,a] and w[1,b]
cancel and

W[1,a,b] z wi,b] - (7rf/d4/4 and S() - f' xf f -. const

b. 1 < < b or 11To < < f (.)th subranges included).

W[I1,a,b] = w[1,b] - t21/4 and S(f) • f4 X fl _ f-2

Thus, the JCF connections are established for the case a = 1.

Similar analysis can be applied for all the forms in Eq. (9) anui for integer and nalf-
integer a generally.

8



NUMERICAL RESULTS

The analytic results of Eqs. (7) through (9) can be used to compute S(irfT0 ) for specific
values of a and To/to. Figure 1 presents typical PSD versus frequency results, which were
obtained for

TO =e12 xt 0

and a G {-7/2, -5/2, -2, -3/2, 1}. The value of a increases from -7/2 for the top curve to + 1 for
the bottom curve. The vertical line at ln(irrf70) = 12 corresponds to

lnitfto) = ln(fT/0) - 12 - 12 - 12 =-0

Thus the breaks in slope occur for

ln(itfto) = 0 and lnfITo) = 0

as advertised. All curves become f-independent for ln(wJT 0) < 0 and exhibit inverse square PSD
for ln(rft0) > 0. The top curve is typical of a < -3 cases. The three middle curves represent the
-3 <_ a _< -1 range for which E = -(3 +a); the variations in slope are apparent. The lowest curve
is typical of the a > -1 range. Although it is unlikely that one could observe such effects in
actual PSD curves, the "bumpiness" to the right of the high frequency transitions is real (i.e., not
numerical).

in(S(fM)

1n(pi f TO)
-10.

-20 •

-30 -

-40 - 0

Figure 1. Power spectral density versus frequency for T, = ' 2 x to.
Curves are shown for lifetime distribution exponent
a G {-7/2, -5/2, -2, -3/2, 1 }. a increases from -7/2 for
the top curve to + 1 for the bottom curve. The vertical
line at ln(i7fT0 ) = 12 corresponds to ln(lrfto) = 0.

9



Results obtained via NIntegrate at arbitrary a tall neatly between the curves shown ir,
Figure 1 and those for half-integer and integer a are indistinguishable from curves obtaiitwd from
the analytic expressions.

CONCLUSIONS

The connection between the distribution of lifetimes and the PSD established by Jensen,
Christensen, and Fogedby (ref 2) for the case of exponentially cutoff distributions of lifetimes has
been shown to apply, with natural parameter correspondences, to sharp cutoff distributions of
lifetimes. Since the range of cutoff forms between exponential and sharp is broad, the present
results suggest that the JCF connections will obtain to a very wide range of size-effect modified,
self-organized critical systems.

The power of symbolic computational systems, such as Mathematica, is nicely illustrated
by the present analysis. As presently described, all calculations can be achieved in Mathematica.
One could also employ the analytic results as starting points for other (e.g., Fortran or C)
computer programs.

10
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